HOMCNORK BY URH?. TLPLLER OF IN. $7 / \mathrm{VI}$

AND WNV/CHI

Attached is a complete translation of a report by Unteroffizier Keller of Insp. 7/VI and WMF/Chi, on four types of hand systems used in Polish illicit W / T traffic. The report was written during October, 1945, and was received fron G.S.I(S) Vienna via M.I.B.

Trans: W.R.L.
No of pages: 16.
TICOM
30th December, 1945

DISTRIBUTION

British
D.D.3:
H.C.G.
D.D. Mi. W. $\{$
D.D. (A.S.)
C.C.R.

Cdr. Tandy
Major Miorgan
TICOIS
S.A.C. (3)

Cdr. Bacon
Lt. Cdr. Manson
Major Cowan
Capt. Collins
Iicon Files (4)
U.S.

$$
\begin{aligned}
& \text { Op-20-G (4) (via Lt. Gar. Manson) } \\
& \text { G-2 (via Lt.Col. Hjlles) } \\
& \text { A.S.A. (4) (via Capt. CJllins) } \\
& \text { Director, S.I.D. USFET } \\
& \text { Col. Kunkel, USAh?e }
\end{aligned}
$$

A substitution Alphabet with alternative equivalents, (Substitution Table) reciphered (periodic adder)

A key word is written in a square 10×1.0 either in the centre (example 4) or in the four corners in the form of a spiral from the outside to the inside (examole 1) or diagonally (example 2) and around this the alphabet and nunerals from 1 to 0 until all the squares are filled in. The first ten figures of the current adder ore taken as row ond colum indicators (exarmple 4).

The adder is composed from the text of a book in which the letters of a line (determined by means of an indicator croup) of the book in question are split up into groups of ten and the latters in such a group are numbered from 1 to 0 acoording to their alphabetical order (example 3).

To encipher a text the letters of the plain languase text are first of all changed into numerals in accordance with the substitution table, tho row indicator constitutes the first digit and the colum indicator the second digit of the oipher element (example 5). The oomplete text having thus been turned into nunerals the adder is written under it and added without carrying the tons (exarple 6). The message to be enciphered is usually consiclerably longer than the adder and in this case the adder is repeated until the complete message has been reciphered.

The enciphered text thus obtained is split up into groups of 5 figures each, the indicator group for the adder (age and line of the book) is written in in a position agreed upon and the indicator numerals which usually correspond to a particular substitution table are added on as the list group.

Note: In the plain langauage texts of messares in this system it is noticeable that the beginings (and the signature) of single inessages are, to a great extent, identical or similar to one enother, for instance:

NR. (figures) --- NR (ficures) --- DN. (figuros) ---
ZDN. (figures) ‥- DNIÁ (figures) --- DO (nane) etc.

Example 1.

Example 2.

Example 3.

Tho line of the book in question ruads:
lich gleichgültiges, unnenschlich; unbewegliches Gesicht bliokte lichgleich giiltigesun menschlich unbeweglic hesgesicht bliokte $\begin{array}{lllllll}9715403826 & 2958431706 & 8390147625 & 9813045762 & 5284397160 & 1642573\end{array}$

Example 4:

Example 5.

The following text is to be enciphered:
Nx. 127. 22.9 . DO Stem.
$\begin{array}{crrrrrrrrrrrrrrrr}10 & 79 & 43 & 07 & 47 & 36 & 43 & 47 & 47 & 43 & 26 & 43 & 63 & 49 & 99 & 97 & 25 \\ \mathrm{~N} & \mathrm{R} & 14 & 4 & 43 \\ \mathrm{~N}\end{array} \mathrm{R}$
(Enciphered from the substitution table in Example 4)

Example 6.

10	79	43	07	47	36	43	47	
97	15	40	38	26	29	58	43	etc
07	84	83	35	63	55	91	80	

The finished message would then comence in the following form: (preamble) $07848 \quad 3356355918$ etc
(b)

Bigram Substitution Alphabet (Fiçure Substitution Alphabet) with short recipher (6 digit odder).

A square 30×30 is divided into 9 squeres 10×10. The olphabet is written horizontally over the upper nargin and verticolly opposite the left-hand margin so that it is in the natural order horisontally and in a systematic but not continously alphabetical form vertically. Between the alphabets and the margins one row is kept free to enter in the row and column indicators. Figures written above and by the side of the alphabets are for the purpose of enciphering numerals, o. special "figure sign" sinilarly written in indicates that figurcs and not letters are to be read (exarmple 1).

Figures from 1 to 0 which are used in the natural order serve as row and colum indicators. The beginning figures in these rows of numbers are not always the same, however, but are rather determined by means of the indicator group on each occasion (examples 2 and 3).

The 9 individual squeres are likewise numbered in regular order beginning with the figure indicated by the indicator group (examples 2 and 3).

The indicator group for the row and colum indicators consists of 4 figures of which one (usually the third) seems to be a dummy only, (in order to make the indicator group recognizable ?). The first figure of the indicator group denotes the figure with whioh tha row indicator comences, the second shows the numbering of the 9 single squares and the fourth likewise denotes the colum indicator (examples 2 and 3).

For reciphering 6 difit adders are used which, moreover, are different for every day of the month. The indicator group for reciphering consists of a 4 digit group which is nothing more than the date of the day and month.

Both indicator groups are reciphered, not, however, with the adders fixed for the messace but (usually) with an historical year-date which stays the same in all messaces (example 4).

In order to encipher a plain language text it is first of all split up into groups of 2 letters each. The row and colunn indicators are then written undemeath the horizontal and to the right of the vertical alphabets in the cipher square, the 9 squares are also numbered, (each alphabet and also each of the 9 squares beginning with a figure chosen at random). The letters of the plain language text arc now turned into figures by looking for the first letter in the vertical alphabet and the second letter in tho horizontol alphabet and putting the indicator figures at the side or underneath as the case may be in place of the letters. Between the two figures thus obteined the number of the square is added which contains the interscetion of the co-ordinates of these letters so thot a 3 digit figure group is now produced, (example 5).

The complete plain language text being enciphered by this neans the adder, deternined by the date in question, is written underneath rand added symblically (i.e. wi thout carrying the tens). The finished message is divided into 4 digit groups and the indicator groups (which arc again reciphered scparately with the numbers of a year) are inserted at an agreed position, (example 6).

Example 1

Example 2.

The indicator, for instance, being:-

$$
\text { (2) } 8 \text { (5) }
$$

the conplete cipher square would appear thus:

Example 3.
With an indicator group 9146 the cipher square would be:

Example 4 -
If the indicator group was 2845 and the date $22 / 10$ and the reciphering number for indicator croups was 1914:

Exomple 5.
The following text is to be oncipherod:
Przyjechał̌om do londynu.
 (Enciphered from the cipher square in example 2).

Supposing the adder for the $22 n$ of each month to read : 553276 and the number with which the indicator groups are reoiphered to be 1914 again:-

The completed message would then appear thus:$\begin{array}{llllllllll}\text { (preanble) } & 2762 & 3603 & 2418 & 3759 & 7405 & 9484 & 3726 & 3124 & 1912\end{array}$ etc.

Trns: WRL

Bigram Substitution Alphabet (Letter Substitution Alphabet) with Substitution Table.

A square 36×36 is divided into 9 individual squeres 12×12. The alphabet is written horizontally above the upper edge and vertically by the side of the left edge in a systematic but not oontinuously alphabetioal form in both anses (example 1).

One column is kept free between the alphabets and the edges to enter in th key word which acts on a now and column indicntor. For the enciphering of numbers and other special signs, 3 further small squares 12×12 are provided which are written in underneath the other squares with a space of 3 or 4 lines between, (example 1).

An agreed key word (in which no letter may be repeated) acts as a row and colum indicator and for the designation of the 12 individual squares. The letters of the key word with which the row and column indicators and the designation of the squares are to cominence are speaified by an indicator group, (examples 3 and 4).

The key word is changed at definite intervals.
For reoiphering a substitution table is used in which on one side (the left) is entered the key word (beginning with the letter given by the indicator group) and on the other (the right-hand side) the normal alphabet likewise beginning with the letter given by the indicator group (example 2).

The (single) indicator group consists of 5 letters of which
the first indicates the letter with which the key-word begins when row indicator
the second indicates the letter with which the key word begins as designation of the 12 squeres
the third indicates the letter with which the key word begins as columin indicator
the fourth indicates the letter with which the key word begins in the substitution table
the fifth indicates the letter with which the alphabet begins in the substitution table
(examples 3 and 4).
The indicator group is not reciphered.
To encipher a flain language text it is first of all divided into groups of 2 letters each. One then enters the key word as a row and column indicator, underneath the horizontal alphabet (similarly above the 3 separate squares also) and on the right
of the vertical alphabet in the aipher square and also designates the 12 small squares, (in the oase of each alphabet and of the 12 squares beginning with a letter of the key word chosen at random). The plain language letters are now converted into cipher letters by looking for the first plain language letter in the vertical alphabet and the second in the horizontal alphabet and substituting the indicator letters, at the side and below respectively, for the plain lenguage letters.

Between the two cipher letters thus obtained the letter of the square is added which contains the intersection of the co-ordinates of the two plain language letters, so that a 3 place letter group is produced, (example 5).

The complete jlain language text being enciphered by this moons, the cipher text (which only consists of letters of the key word) is changed into letters of the alphobet from the substitution table.

Forthis purpose the key word is written on the left hand side of the substitution table and the olphabet on the right-hand side in both anses beginning with any letter of the key word or alphabet as the ocse may be, (example 2).

The first aipher letter is thon lowked for on the leithand side of the substitution table and a letter of the alphabet on the right is substituted, after that the seeond letter in the some way and so on.

In this manner the whole wossage is enciphered and divided into 5-place groups. After the indicator group hes been composed from the first letters of the colum and row indicators, the designation of the squares, the key-mord and the alphabet of the substitution tabile and inserted in the position agreed on, the message is completed, (example 6).
example 1.

Example 2.

If the genitive of the word pstrokacizna - "pstrokacizny" was used as the key vord 'and the lost two letters of the indicator group were ...cl, the substitution table would appear thus:-

c	l	x	j
i	m	y	k
z	n	z	
n	o	a	
y	p	b	
p	q	c	
s	r	d	
t	s	e	
r	t	f	
o	u	g	
k	∇	h	
o	w	i	

Example 3.

Using the key word pstrokacizny again and if the indicator group is asoym the cipher square would appear thus: (see orerleaf) and the substitution table would read:-

To Exeraple 3:

Example 4.

Indicator word as in example 3 pstrokacizny
The indicator group :- nrksb
The cipher square would then read:-

And the corresponding substitution table to it would be:-

s	b	n	z
t	c	o	o
r	d	p	
o	e	q	
k	f	r	
a	g	s	
c	h	t	
i	i	u	
z	j	v	
n	k	w	
y	1	x	
p	m	y	

Example 5:
The following text is to be enciphered:-
Przyjechaxem do Londynu

Example 6:

The text from example 5 reciphered from the substitution table of example 3:
iin ios yrk cra ati tai itz ptz oik soz yot vhj hra kos uqi tph bfv vpi zpw uve ogi yub

If the 4th group were the indicator group the cormpleted nessare would read:-
(preamble) vhjr akcsu qftph asaym bfvvp izpwu etc.

Twans: W.R.L.
(d)

Simple Box (wi thout key).
The plain language text is written horizontally in 0 rectangle of any size (the lest line which is usually incoinplete is filled with dumy letters chosen at random) and read off vertically in the normal sequence of the colums from left to right. The text thus transposed is divided into groups of 5 letters each. The length and depth of the box is made known in the message by means of the first two letters whereby numbers are chonged into letters by means of a substitution table (as in the following exomple). Note that in the message punotuation marks always appear as a combination of some other letter and q and figures (in the message) as a combination of some other letter and x, as in the following tables.

Example:

The following text is to be enciphered:-
"Beide Konngruppen werden übersahluisselt, aber nicht mit den für die Sprüche bestimaten Wumzahlen, sondern meist mit einer geschichtlichen Johreszahl. Diese letztere bleibt bei allen Sprüchen gleiah."

Let the following be a substitution table for figures to indicate the length and depth of the box:

> beidekenngruppenwerde nueberschluesseltqbab ernichtnitdenfuerdies prueohebestinmtenwurm zahlenqbsondernmeistm iteinergeschiohtliohe n johreszahlqadieselet $z t e r e b l e i b t b e i a l l e n s p$ ruechengleichqaendeen

The completed messace wouid then appear thus:~
qdone pzinz reurr atjtu ienuh etc.

Trns: W.R.L.

